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The behavior of liquid crystalline polymers in the interfacial region between the isotropic and nematic
phases is investigated based on an inhomogeneous free-energy functional. A mean-field approximation is
used for the system of semiflexible polymers obeying the Saito-Takahashi-Yunoki description and in-
teracting via the Onsager-type repulsive interaction. The density distribution of the polymers crossing
the interface is computed by using a spherical-harmonics expansion. The calculated interfacial tension is
consistent with the results of the scaling argument which is also presented in this paper.
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I. INTRODUCTION

The development of orientational order near the inter-
face in liquid-crystalline materials has been the focus of
theoretical and experimental investigation during the
past decades for fundamental reasons and technical im-
portance [1-15]. Due to the coupling between the angu-
lar order parameter and the molecular concentration,
many interesting features can occur; the coupling, howev-
er, also introduces difficulties in establishing and solving
models for this type of system [2,5-13].

Our main concern here is the interface between the iso-
tropic (I) and nematic (N) states of a lyotropic system.
Several theoretical studies have been reported for the
isotropic-nematic interface of the rigid-rod systems
[6—13]. In these studies, the spatial variation of the inter-
face profile is induced by considering the Onsager-type
rod-rod interaction at different positions in space. It is
found that the interfacial width is of order L, the length
of the rods. The rigid-rod model is of limited utility for
liquid-crystalline polymers, since most liquid-crystalline
polymers are semiflexible, not rigid.

The importance of studying the isotropic-nematic in-
terface of semiflexible liquid-crystalline polymers was first
stressed by Grosberg and Pachomov [11]. The main
length scale in the Onsager-type interaction for different
orientational regions is now approximately the Kuhn
length a. The interfacial width is expected to have the
same order, regardless of the total contour length of the
polymer chain L. The strength of the interaction is of or-
der D, where D is the diameter for the excluded volume
interaction. The interfacial problem of liquid-crystalline
polymers is quite different from that of, say, immiscible
polymer A and polymer B [16]. For the latter, the size of
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the interface is approximately of the order of the radius
of gyration (aL)'/?. Although the liquid-crystalline inter-
face is much narrower, it is still much wider than the in-
terface of low-molecular-weight systems; for persistent
chains, the Kuhn length can be as large as a few hundred
times the basic monomer length scale.

Presently, several general theories that contain ambi-
guous or nonrealistic parameters are available for
semiflexible polymers [17-19]. However, none of them
deals with a concrete model that can give results compa-
rable to experiments. To understand the problem at the
molecular level, we have established a mean-field model
based on the Saito-Takahashi-Yunoki description [20] for
semiflexible polymers. For the bulk properties at the flex-
ible limit [21], the model recovers that of
Khokhlov and Semenov (KS) [22], who extended the On-
sager theory [23] to very long semiflexible chains in order
to describe the isotropic-nematic transition.

In the present paper, we study the isotropic-nematic
interface of flexible polymers assuming that the chains in-
teract with each other only via hard-core repulsion. Our
basic technique to solve the model is to maintain
coefficients of the high-order terms in the expansion of
the distribution function in terms of the spherical har-
monics; these coefficients are spatially varying. We rely
on numerical computation to exactly calculate the inter-
facial profile, thus avoiding the pitfalls of other approxi-
mation methods [5-11,17,18,24].

This paper is organized as follows. In Sec. II, we
present a qualitative discussion and scaling argument of
the problem. In Sec. III, we specify the model and pro-
vide the basic analytic formulas. In Sec. IV, we present
the numerical results and discussions.

II. SCALING ARGUMENT

In this section, we discuss a qualitative consideration
that yields the scaling properties for various physical
quantities. A more rigorous formulation of an exact
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theory will be presented in the next section.

We are mainly interested in flexible chains with a
homogeneous distribution of flexibility along the chain,
i.e., the wormlike model in the flexible limit. Qualitative-
ly, the physical behavior of the system should be similar
to that of a system consisting of the same number of mol-
ecules described by the freely jointed model. In such a
model, a polymer chain is regarded as being made up of
L /a rigid rods, while the junction between the two con-
secutive rods is assumed to be freely jointed. Since there
is no entropy cost associated with these junctions, the
orientational entropy of the system consisting of N mole-
cules, each having L /a rod segments, is the same as the
system consisting of NL /a freely moving, disconnected
rods of length a. For the latter, let us assume that we can
use the Onsager model that concludes that when the
number density of rods reaches the transition number
density of order C,,4~5/a’D, a first-order isotropic-
nematic transition takes place [25]. Using this analogy,
we can estimate that the I-N transition for the system of
freely rotating rods will take place near the molecular
number density  Cpains = Coegments /(L /a)=(5/a D)/
(L /a). Indeed, the exact result for wormlike chains at
the L /a >>1 limit shows a transition density of the same
order with a somewhat larger coefficient [21,26]. The
difference in the coefficients is caused by taking into con-
sideration the orientational entropy between the two per-
sistent segments.

Now we turn our attention to a qualitative discussion
for the I-N interface. As mentioned earlier, the width of
the interface should be of order a. Assume that one seg-
ment of the chain is dispatched across the interface re-
gion from the I phase to the N phase. The free-energy
change due to the entropy increase is of order kyT.
There are, in total, @ ACgmenis Segments for an interface
area A. The interfacial tension is then approximately
kpTa AC prenis/ A < kg T /aD. Note that the interfacial
tension is inversely proportional to the Kuhn length a
and is independent of the total chain length L. Our calcu-
lation below supports this scaling behavior.

The change in density profile across the interface is pe-
nalized by a translational entropy term in the free energy.
A prototypical example of such a term is the Cahn-
Hilliard-like square-gradient term [27] described by the
operator (u-V,)? [6,9], where u is the orientational vari-
able for the polymer segments. In an idealized picture
for qualitative analysis, the orientational distribution of
the N phase could be imagined to be of a §-function form.
In such an approximation, all segments are perfectly
aligned. The above square-gradient operator can then be
represented by the term cos’(u-n) where n is the normal
of the interface. In order to minimize the surface tension,
a square-gradient term will naturally lead to a preferred
tilt angle u-n=1/2, a result consistent with the quantita-
tive analysis to be described in Sec. IV. It was questioned
by Moore and McMullen [10] whether or not a square-
gradient expansion is sufficient for describing the orienta-
tional interfacial problem such as the one considered
here. Our model is based on a closed-form approach that
contains, in principle, all expanded terms. From our ex-
act result, it can be seen that the high-order gradient
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correction terms to the square-gradient term would not
affect the conclusion drawn here regarding the preferred
tilt angle.

III. BASIC FORMALISM

In this section, we develop the basic formalism for the
problem. Consider a spatially inhomogeneous system of
semiflexible polymer chains. The distribution function of
polymer segments with contour variable ¢ depends on
both the spatial and orientational variables. Let p(r,u)
be the contour-averaged number density of the chains at
the point r, having the orientation specified by the unit
vector u. In a self-consistent mean-field theory, the grand
thermodynamical potential function Q of the system can
be expressed in terms of the distribution p(r,u) and the
mean field w (r,u) representing the averaged effects of the
neighboring chains

Q

=_ fdrdu w(r,u)p(r,u)

2
+£2—D—fdrdudu'p(r,u)p(r,u’)IuXu’I

—,ufdrdup(r,u) , (1)

where p is the chemical potential, L and D are the total
contour length and the diameter of a polymer chain. In
Eq. (1), the first term stands for the conformational en-
tropy and the second term represents the excluded-
volume interaction between segments of the polymer
chains, where we have assumed the second virial approxi-
mation. Minimization of Eq. (1) with respect to p(r,u)
yields the interfacial profile p(r,u).

The relationship between the mean field and the densi-
ty distribution is governed by a second-order partial
differential equation, described in detail in the Appendix.
There it is shown that the mean field for the limit
L /a >>1 can be expressed as

L Vig(r,u) u-Vg(r,u)
w(r,u)=— —
a gq(r,u) q(r,u)

) (2)

where g (r,u) is an auxiliary function related to p(r,u) by
p(r,u)=gq(r,—u)g(r,u) . (3)

The spatial variation is indirectly introduced through the
last term in Eq. (2). It is not obvious that the free-energy
model in Egs. (1)-(3) can be expanded in a square-
gradient series because of the appearance of the first-
order operator V.. One can show that by introducing a
spherical-harmonics expansion for the angular depen-
dence and a weak V, expansion for the spatial depen-
dence, Eq. (1) can be rewritten in a more conventional
square-gradient form.

Before we proceed further in solving the proposed
problem, we would like to point out a symmetry property
of the model. From Eq. (3), an inversion symmetry for
the distribution function always exists,

p(r,u)=p(r,—u) . 4)

Since a thermodynamic potential function should be in-
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variant under symmetry transformations [28], Eq. (1) im-
plies that the same inversion symmetry also exists for the
mean field,

w(r,u)=w(r,—u). (5)

One should note, however, that the function ¢(r,u) lacks
the inversion symmetry in general. Other special symme-
try properties that can be deduced for special cases will
be discussed below.

A. Bulk phases

The bulk properties for the phase transition have been
studied and reported by several authors [21,22,26,29].
Here for completeness, we review the main results.

For the case of a spatially homogeneous phase, p(r,u)
and g(r,u) become independent of the position:
p(r,u)=p,(u), g(r,u)=q,(u). The inversion symmetry
of the mean-field function in Egs. (2)—(5) implies

qb(u)=qb(—u) s (6)

which is only valid for the spatially uniform case. Fur-
thermore, the nematic state is assumed to be uniaxial, so
that one can conveniently define the polar variable 8 mea-
sured from the nematic director [1].

The free-energy model in Egs. (1)—(3) reduces to the
KS model for the isotropic-nematic phase transition [22],

_aQ 2

K, TLV fduqb(u)V“qb(u)
+ “IED [ dudup,(w)p,(u)luxw’|
—ﬁfdupb(u) , )]

where i=apu /L and V is the system volume.

There are at least three procedures that have been used
to minimize the grand potential in Eq. (7). The first, as
was used by several authors, is the variational method.
The function p(u) in Eq. (7) is substituted by an
artificially imposed form similar to that proposed by On-
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of Eq. (7) with respect to the unknown distribution func-
tion p,(u). The variable space for the spherical polar
variable 6 is discretized and the distribution function is
represented by a series of numbers at these discretized
points. An efficient numerical algorithm can be estab-
lished based on this method [21]. However, it is difficult
to generalize this method to study the interfacial proper-
ties due to the difficulty in handling a large number of
variables; that would lead to extensive computations.

The third method is also based on a direct minimiza-
tion of Eq. (7), but with respect to the unknown distribu-
tion function g,(u), which is expanded in terms of the
spherical harmonics [26]. It is this method that we have
adopted to analyze the interfacial problem, thus we give
here a detailed derivation.

The minimization condition for the grand thermo-
dynamical potential is a nonlinear integrodifferential
equation:

[—V2+aLD fdu’q,,(u’)qb(u’)luXu’l—ﬁ]q,,(u)=0 .
(8)

Due to the rotational symmetry of the system around the
nematic director, this integrodifferential equation can be
attacked by expanding all terms in Legendre polynomials.
The inversion symmetry of g,(u) in Eq. (6) implies that
all coefficients of the odd-order Legendre functions are
zero. For later convenience we write the expansion in
terms of the spherical harmonics [30],

1 (-]
Qb(“)=-’?‘/‘—7§‘ 1§0¢1b,21 Y00, 9)

where g, ,, is dimensionless. To expand the excluded-
volume interaction term, we make use of the spherical-
harmonic expansion of the kernel {uXu’[, which can be
obtained by using the addition theorem [30]

ol 41
luxvw|=3 3 ——dyY, (0¥} (@), (10)
,§0m 4] +1 2

sager [23] for rigid rods where
p,(u)~cosh(Bcosh) , d0=% , (11a)
where 0 is the polar variable; the minimization procedure 4l +1)2DN21 —2)
is then approximated by minimizing the free energy with dy=-— ;EH ] _)(1 " I) '(l' T l))" , (Iz1). (11b)
respect to the variational parameter 8 [22,29]. ( I :
The second method is based on a direct minimization Now from Eq. (8) one has
J
— 87
(2121 +1)—Flgp 5 + ’2%14 % mdu,121,21,,212121,,213,214 lqb,ZIZQb,leqb,2l4=0 , (12)
[
where coefficient. The chemical potential used in the coexistence
172 condition of the isotropic and nematic phases can be ex-
[ (41, +1)(41,+1) pressed as
1213,213 4m(4l,+1) d 21172
=27 |3 === | 3 Loy, 95,00, 90
X[C(21,,21,,215;0,0,0)]?, (13) Sod+1 S 21,21,,21, 96,21, 96,21,
and C(l,l,,l5;m;,my;,m;) is the Clebsch-Gordan (14)
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The hierarchy of the coupled, nonlinear algebraic equa-
tions in Eq. (12) must be truncated at a certain order for
actual computation. Vroege and Odijk [26] used the
fixed-point iteration technique to solve Eq. (12) for a
given u. The equations must be manipulated in order to
make the computation procedure convergent. Here we
use a different technique; the Newton algorithm for solv-
ing a set of nonlinear equations is applied.

The expansion truncated at 2/ =10 gives rise to the
value of the chemical potential at the phase equilibrium

E=20.4935 . (15)

The expansion truncated at 2/ =20 gives rise to
[0=20.4926 [26]. Therefore, we consider it sufficient to
truncate all the series expansions at 2/ =10 in our com-
putation. We try to maintain a small number of
spherical-harmonic coefficients, because the interfacial
problem involves a large number of variables for addi-
tional spatial dependence. The harmonic coefficients qlﬁ'z,
in Eq. (9) for the homogeneous nematic phase are sum-
marized in Table I. For the isotropic phase only the / =0
coefficient is nonzero. For comparison, we have also list-
ed the result obtained by Vroege and Odijk [26] when the
series is truncated at a much higher order. While these
authors found that the fixed-point iteration algorithm
gives two possible solutions for the nematic state when
A <17.50, we found only one solution by using the
Newton algorithm.

Truncating at 2/ =10 leads to the coexistence concen-
tration boundary given by

C;=aLD [ dup}(u)=13.047 (16)
and

Cy=aLD | dup(u)=14.028 , (17)
N Pp

and the orientational order parameter S of the nematic
phase given by
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TABLE I. The expansion coefficients for the bulk phases.

Coefficient Vroege and Odijk [26] This work
qt 3.611954 3.612004
qd 3.289032 3.289 341
qy 1.774 425 1.773 986
q¥ 0.247511 0.247 362
q¥ 2.058 18X 1072 1.97555X 1072
qy 1.2152X 1073 1.2136X 1073
adb 6.6548X 1073 6.6344X107°
b, 3.4577X10°¢ 0
aM 1.7411X 1077 0
q 8.556X10™° 0
ql 4.118X1071° 0
% 1.95X 10! 0

These results are in agreement with more accurate re-
sults: C,=13.046, C,=14.029, and SV=0.4618 [21,26].

B. Isotropic-nematic interface

The inhomogeneous interface represents a much more
complicated computational problem. The rotational
symmetry and the inversion symmetry of the ¢ function
are destroyed. The free-energy model in Egs. (1)-(3)
must be solved by taking the spatial variable r, the polar
angle 6, and the azimuthal angle ¢ into consideration.

We have chosen the coordinate system as in Fig. 1.
For the spatial variable, the x axis is along the normal to
the flat isotropic-nematic interface; the system is transla-
tionally invariant in the y and z directions. Thus, the dis-
tribution function only depends on x spatially. The polar
variables to describe u are defined in the tilted coordinate
frame labeled by the Cartesian variables u,, uy,, and u,.
The direction of the u, coordinate coincides with the
bulk nematic director, so that the angle between the
direction of the u, axis and the normal to the interface is
the tilt angle 6,. The u, direction is chosen in the same
direction as the y axis. We can then rewrite the grand-

SN={(P,(cosf))=0.4615 . (18)  potential functional (1) in the form
|
Q o2 . . dg(x,u)
——kBTLA fdx dug(x,—u)Vyg(x,u)+ fdx dugq(x, u)(cosB,uz+sm9,ux)—ax
aLD ’ ’ ' —
+ 5 fdx dudu'p(x,u)p(x,u’)|luXu |—;Lfdx dup(x,u), (19)

where A is the area of the interface. Note that in Eq. (19)
we have used the rescaled variable x which is in the units
of the Kuhn length a.

In the following analysis, the tilt angle 6, in the second
term is fixed to several given values in order to examine
the effect of a nontrivial tilt angle. The minimization
procedure leads to an integrodifferential equation

[ —V2+(cosO,u, +sinb,u, )
dx

+aLDfdu'p(x,u’)|u><u’|—ﬁ]q(x,u)=0 , (20

that needs to be solved for the flat interface. The bound-
ary conditions are imposed so that at the x — + o limit
one has the nematic phase and at the x — — oo limit the
isotropic phase

I
qdp » X—>— 0 ,

q(x,u)= (21)

qlfv(u) , X—>+oo .

For an arbitrary 0, it can be seen from Eq. (19) that
g (x,u) has the following symmetry properties:

q(x,u)=q*(x,u)=q(x,u,,y) , (22)
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where u, =(0,—¢) is the mirror image of u=(6,¢)

when the u, =0 plane is considered to be the reflection
mirror.

The partition function g(x,u) can be expressed in
terms of the spherical harmonics Y, ,, (u),

1 22 UnX)Y,(u) . (23)

( N )=——;—
O VaIp &2

We find from the symmetry properties in Eq. (20) that the
coefficients g, ,, obey

gim(X)=q (X)=(—1)"gq, _,(x) . (24)

By using these symmetry properties, we can reduce the
number of independent variables in the actual calcula-
tion. Note that the coefficients of the spherical harmon-
ics of odd / index in Eq. (23) are now nonzero.
We now multiply both sides of Eq. (20) by Y}*,,(u) and
integrate over u. This procedure yields
|

9G; +1,m +1(X)
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FIG. 1. Definition of the coordinate system. The spherical
polar coordinates for describing u are defined in the u-
coordinate frame. The interface normal is along the x direction
and the bulk nematic director is along the u, direction. The y
direction coincides with the u, direction, which is specified by
the filled circle at the origin.

8g; —1,m —1(x) 894 1,m —1(x)

U +1) =g m(x)—sin(6,) |J; 11 m +1 ax

+Jm

8g; —1,m +1(x)

x I+1,1—m ax

—J; _
h=m ox
, 9+ 1,m (%) 3Gy ()
+cos(6,) | I/ 4 1.m ax"' S/ ax”'
8w l,+m
" 1211:1 41, +1 (—1)* lelqlz'”’z(x)qls""3(x)ql4v'"4(x)11v_’":le’mlvlz""zlzﬁ»”’"1’13’"‘3’14’”‘4:0 ’ (25)

where the boldfaced indices 1 and m indicate that the sum
is over all relevant values of /,, I,, I3, 14, m, m,, m5, and
my,. The constants J, J', and I are known,

1/2

(I+m)l+m—1) , (26a)

71 (21 +1)(21—1)

1
,m"‘2‘

! =
ILm

(26b)

172
(I +m)l —m)
(21 +1)21—-1) ’

and

21, +1)21,+1) |'7?

4m(215+1)

my

I =(—
lyymyly,my,ly,my (

X C(1},1,,15;0,0,0)

XC(11,12,13;m1,m2,—m3) . (260)

The harmonic coefficients g, ,,(x) must obey the bound-
ary conditions

ql{,I,m y X—>T 0,
9,m )= (27)

N
9b,,m » X—+oo,

where g;{}) are those listed in Table I. The nonlinear

integrodifferential equation (20) is now represented by an
infinite number of nonlinear algebraic equations that con-
tain unknown variables g, ,,,.

In practice, we truncate the expansion in Eq. (23) after
the /=10 term. Because of Eq. (24), there are only
n;=(+1)1+2)/2=66 independent functions g, ,,(x)
that need to be considered. We assume that these func-
tions approach their asymptotic bulk-phase values ex-
ponentially fast, so that we redefine a spatial variable £ by

£=tanh(x /2) . (28)

The differential term in Eq. (25) can be rewritten
as 9q),, /3x =1(1—£*)dq, ,, /OE. The interval
x =[—o,00] now becomes £=[—1,1]. In order to
represent the spatial variation, we use n,=50 equally
spaced discrete points in the interval [ —1,1] for £ with a
mesh width A£=0.04. The derivative of g ,,(§) with
respect to £ is approximated by using a finite difference
scheme. The corresponding discretization for the variable
X is nonuniform; more points are considered near the in-
terface and fewer points farther away. A step function
centered at x =0 is assumed for the initial guess of the in-
terfacial profile and the values g,,, obtained for bulk
phases are chosen to be the initial approximation for each
side of the step functions. The chemical potential is
chosen to be that for the coexistence condition,
[1=20.493. At each step of the numerical iteration, the
n;(ng+1)=3366 nonlinear equations are linearized by
using the guessed profile as the reference one. The linear



equations are solved for the n;(ng+1)=3366 variables
and the result is used as the new guess for the next step of
iterations. This procedure involves the inversion of a
large matrix of order 3366. The matrix can be expressed
in a block tridiagonal form so that the block-elimination
method can be used [31]. The iteration is assumed to
converge when the right-hand side of Eq. (25) deviates
from zero with a relative precision of 5X10™%. This
method has proved to be quite efficient, and it converges
to the given accuracy in less than ten iteration steps.

IV. RESULTS

We can use the functions g; ,,(x) to compute the num-
ber density profile, the order-parameter profile, the biaxi-
ality profile, the interface tension, etc. For this purpose,

we need to consider the density distribution
J

1
e?(x)=5fdu(3uu—l)p(x,u)/fdup(x,u)

‘/—6P2,2 ~ P20 0

In the interfacial region the tensor order parameter in
Eq. (32) contains nonzero functions p, ,(x) and p, ;(x),
which symbolize the appearance of the biaxiality and the
variation of the principle nematic axis, respectively. Di-
agonalizing the matrix in Eq. (32)

Lp—5) 0 0
USU'=| 0 —LP+S) 0], (33)
0 0 S

enables us to identify the principle order parameter S (x)
and the biaxiality parameter P (x)

S(x)= ZT/——;;; (P20t ‘/_6P2,2+ ( 9P%,o+ 6p3,2+24p3
—6V'6py,002,2)" 1 s
(34)
and
P(x)= ﬁpo’o[@z,o‘*’ V'54p, ,—(9p3,0+6p3 2+ 24p3
”6‘/3P2,0P2,2)1/2] .
(35)

The deviation angle y(x) between the local nematic
director at x and the bulk nematic director at x = c can
also be calculated using the diagonalization matrix U

tany (x)=[( 1-5P%,0+P%,2+4P%,1 _‘/—6P2,opz,2)1/2
—V 1.5P2’0+p2’2]/2p2,1 . (36)

The interfacial tension o can be calculated by consider-
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prw=—=3 3 p(x

IOm

)Y, (a), (29)

in which the coefficients p, ,,(x) can already be deduced
from g ,,, (x)

2 2

_ 1
I—m,ll,ml,lz,mz( 1)
Il,lzml,m2

plm(x

Xq,l’ml(x)qlz_mz(x) . (30)

Integrating p(x,u) over the spherical polar variables,
we find the spatial variation for the number density

c(x)=aLD fdup(x,u)=(47r Y2560.0 - (31)

The degree of orientational order is characterized by
the statistical average of the tensor 2(3uu—I) [1],

(32)

ing the difference between the grand thermodynamic po-
tential of the interface in Eq. (19) and that of the homo-
geneous, isotropic phase. Written in terms of p, o is ex-
pressed as

o _ 2w pto
kBT"‘—_aD'f dx[do(poo)
(=nm

R TEy

I=0m

dypiim] » (37

The actual integration is carried out by substituting the
variable £ in Eq. (37) and implementing the Simpson rule
for integration over &.

The profiles of the density c(x), the order parameter
S(x), the biaxiality P(x), and the deviation angle y(x)
are calculated for different values of the tilt angle and are
plotted as functions of x in Fig. 2. The centers of each of
the density profiles in Fig. 2(a) are consecutively shifted
by a from the previous one for each given 6, in order to
display all five figures in one plot. The relative positions
between c, S, P, and y for a given 6, are kept. From Fig.
2(a), it can be seen that the interface width of the density
profile is roughly 2a. The interface width is the nar-
rowest at 8, = /2, and it increases as the tilt angle 0, de-
creases. The behavior observed here is comparable to
that observed for the I-N interface of rigid rods. In gen-
eral, the spatial variation of the density profile is quite
smooth. The density profile for 8, =w/2 displays a de-
pletion near the isotropic side of the interface. Earlier,
we had found a similar dip in an analysis of the interface
for rigid rods, for 6,~0 [12]. In both cases, the dip ex-
tends into the isotropic phase for about the size of the in-
terfacial width. We are unable to propose a qualitative
picture to explain this. Grosberg and Pachomov [11] dis-
cussed the cause of the possible nonmonotonic behavior
of the interfacial profile by observing the behavior of the
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orientational entropy. The profiles found here cannot be
simply explained by such a discussion.

Figure 2(b) shows the order parameter profile. Unlike
the density profile, the order parameter profile S(x) is a
monotonic function of x in general. The interfacial width
of the order parameter seems broader than that of the
density profiles. The center of the density profile is al-
ways slightly shifted towards the nematic phase com-
pared to that of the order-parameter profile. The dis-
tance between the center of the density profile and that of
the order-parameter profile increases as 0, decreases. At
0,=m/2, it reaches the minimum. Similar behavior has
been observed for the interface of rigid rods [12].

Figure 2(c) shows the profile for the biaxiality parame-
ter P(x). The biaxial effect only appears significantly in
the interfacial region. It is negative on the isotropic side
and positive on the nematic side. The biaxiality is strong-
est for 6, = /2 because of the strong effect of the inter-
face in distorting the distribution function. There is no
biaxialty for the 6, =0 case because of the rotational sym-
metry. In general, the biaxial effect for the I-N interface
is quite weak, confirming an earlier observation made by
one of us [13]. In contrast, Marcus [24] investigated a

13.2
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Landau-expansion model and concluded that the biaxiali-
ty effect plays an important role in determining the I-N
interfacial structure.

Figure 2(d) shows the director deviation angle profile.
For 6,=m/2 and 0, we can show that p, ;=0 in general.
The orientation order parameter tensor in Eq. (32) is di-
agonalized. In these two cases, there is no change of the
nematic director across the interface. For the tilt angle
having other values, the deviation angle defined in Eq.
(36) can be calculated. As can be seen from the figure,
v(x) is very small. It is difficult to give a realistic error
estimation for ¥(x). We are not certain about the actual
existence of a deviation of the nematic director because of
the smallness of the y(x) angle.

Figure 3 shows the dependence of the isotropic-
nematic interface tension on the tilt angle 6, between the
bulk nematic director and the normal to the interface.
The interface tension is a monotonic function of the tilt
angle and has a minimum at 6,=w/2. Therefore, the
excluded-volume interaction prefers to have a tilt angle of
m/2 [32]. This is the same conclusion drawn earlier for
rigid rods [12]. The interface tension o at 6,=m/2 is
given by

0-5 T T M T T T T T

o
w

T
vl

0.0 " Il " 1 L 1
-4.0 20 40 6.0 8.0

-2.0 0.0 10.0

-0.01

-0.02 PR N 1 . 1 . 1 L 1 L 1
40 -20 00 20 40 6.0 8.0

z/a

10.0

FIG. 2. (a) density profile c(x), (b) order-parameter profile S(x), (c) biaxiality profile P(x), and (d) profile of the deviation angle
7(x) of the nematic direction from the bulk nematic direction, at the isotropic-nematic interface. The centers of these profiles are
shifted by a in order to clearly display them for different tilt angles. The tilt angles (6,) are indicated in the figure.
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o0=(0.221£0.002) , (38)
aD

which is consistent with the scaling argument given in
Sec. II. The important length scale appearing in the in-
terfacial tension and width is the Kuhn length a, or more
precisely the persistent length 2a. The total contour
length L becomes important only when we need to count
the number of effective Kuhn lengths in the system [33],
such as in calculating the molecular number density. The
I-N interfacial tension for semiflexible polymers can then
be written as

L kgT
= — O
D (R*)|gp

where (R?2)|gp is the Kratky-Porod expression for the
mean square end-to-end distance [34], and G(L /a) is a
smooth function of its argument. We know from this and
previous results [12] that 3(0)=0.181 and &( « )=0.221.

The case of 6, = /2 is special, for which the surface
tension exhibits a minimum. In addition to the symmetry
properties discussed in Eq. (22), g(x,u) also obeys
the symmetry property g(x,u)=g(x,u, ) with

U, =(w—0,¢). Applying this to the series expansion in

L
a

o R (39)

(23), we can show that all the odd ! +m terms are absent.
Therefore, we may reduce the number of the g; ,,(I =10)
functions to 36. The reduction of this number enables us
to increase the number of mesh points for x, while keep-
ing the total variable number the same order. For
ng =100, we found 0 =0.220kz T /aD. In Fig. 4 we show
the expansion coefficients g,,, as a function of x for
6,=m/2 at the interface. Since these functions are very
different in magnitude, here we only plotted 24 pairs of
(I,m) with absolute values greater than 1X 1073,

V. SUMMARY

In this paper, we have considered an inhomogeneous
free-energy model for the isotropic-nematic interface of

0.1 1 L L 1 " 1 L 1 o
0.0 0.1 0.2 0.3 0.4 0.5

B¢(m)

FIG. 3. The isotropic-nematic interfacial tension as a func-
tion of tilt angle 6,.
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liquid-crystalline polymers. We have developed a numer-
ical procedure to obtain an exact numerical solution for
the interfacial profile and confirmed many general expec-
tations for the physical properties in the interfacial region
caused by the repulsive excluded-volume interaction.

The basic framework to generalize the present ap-
proach to deal with semiflexible chains has already been
set up in the Appendix. The actual calculation, however,
demands much more work—one needs to consider the
distribution function as a function of the contour coordi-
nate because different segments have different orienta-
tional properties. We hope to report this investigation in
the near future.
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APPENDIX: THE FUNCTIONAL INTEGRAL APPROACH

The partition function for N wormlike polymers con-
tained in a volume Vis given by

1 N
Z=7va HID(rj(t))D(uj(t))P(rj(t),uj(t))

-
Xexp[—W/kgT], (A1)

where the wormlike chain is described by the statistical
probability
2]

%) (r(t)*r(O)—fotds u(S)] ;

du(t)
dt

__a ri
4L Yo

P(r(2),u(t)) <exp

(A2)

and the intermolecular potential

Wo_ 1 ol (L, PP
TP % Jode [ dro (o)),

(A3)

where L is the contour length and a is the Kuhn length.
The interaction potential v (r,u;r,,u,) has the Onsager
form, when L,a >>D:
v(r;,u,315,0,) =L2D8(r;—1,)|u; Xu,| . (A4)
Following the standard functional integral approach
[16,35], one can now define the Green function
Q(t,1,u;1p,u,) for the distribution function of a polymer
chain of length ¢ to have the initial end at (ry,uy) and the
final end at (r,u) in the phase space. The partition func-
tion g (¢,r,u)= [droduyQ(1,1,u;10,uy) obeys a diffusion
equation in an external field w (r,u) [35]

dq(t,r,u) _ | L

ZV2i—LuV,— . (A5
ot aVu Lu-V,—w(r,u) |g(¢,r,u) (A5)
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FIG. 4. The expansion coefficients as a function of x for different / and m at tilt angle 8, = /2. [ and m are indicated in the figure.



51 ISOTROPIC-NEMATIC INTERFACE OF LIQUID- . ..

The total partition function of the chain is
Q=fdrduq(t=1,r,u) . (A6)

The chain-averaged density function p(r,u) is then deter-
mined by

pirw= [ldtgti—t,r,~wg(r.rw). (A7)
Including only the Onsager-type excluded-volume in-

teraction term, the mean-field free energy can be written
as

4557

F 47N
= ] _—
k,T N In 0

— fdrdu w(r,u)p(r,u)

2
+£§—D—fdrdudu’p(r,u)p(r,U’)|uXu'| , (A8)

where we have assumed the second virial approximation.
For the rodlike limit, Egs. (A5)—(A8) recover the extend-
ed Onsager model used to describe the inhomogeneous
rigid-rod systems [9,12]. For the flexible-chain limit,
L /a >>1, Egs. (A5)-(A8) give Egs. (1)-(3).
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